

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the "Company"), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Note: Interspinous Fixation (Fusion) Devices is addressed separately in medical policy 00679.

Services Are Considered Investigational

Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers interspinous or interlaminar distraction devices as a stand-alone procedure as a treatment of spinal stenosis to be **investigational.***

Based on review of available data, the Company considers the use of an interlaminar stabilization device following decompression surgery to be **investigational.***

Background/Overview

Spinal Stenosis

Lumbar spinal stenosis, which affects over 200,000 people in the United States (U.S.), involves a narrowed central spinal canal, lateral spinal recesses, and/or neural foramina, resulting in pain as well as limitation of activities such as walking, traveling, and standing. In adults over 60 in the U.S., spondylosis (degenerative arthritis affecting the spine) is the most common cause. The primary symptom of lumbar spinal stenosis is neurogenic claudication with back and leg pain, sensory loss, and weakness in the legs. Symptoms are typically exacerbated by standing or walking and relieved with sitting or flexion at the waist.

Some sources describe the course of lumbar spinal stenosis as "progressive" or "degenerative," implying that neurologic decline is the usual course. Longer-term data from the control groups of clinical trials as well as from observational studies suggest that, over time, most patients remain stable, some improve, and some deteriorate.

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

The lack of a valid classification for lumbar spinal stenosis contributes to wide practice variation and uncertainty about who should be treated surgically and which surgical procedure is best for each patient. This uncertainty also complicates research on spinal stenosis, particularly the selection of appropriate eligibility criteria and comparators.

Treatment

The largest group of patients with spinal stenosis is minimally symptomatic patients with mild back pain and no spinal instability. These patients are typically treated nonsurgically. At the other end of the spectrum are patients who have severe stenosis, concomitant back pain, and grade 2 or higher spondylolisthesis or degenerative scoliosis >25 Cobb angle who require laminectomy plus spinal fusion.

Surgical treatments for patients with spinal stenosis not responding to conservative treatments include decompression with or without spinal fusion. There are many types of decompression surgery and types of fusion operations. In general, spinal fusion is associated with more complications and a longer recovery period and, in the past, was generally reserved for patients with spinal deformity or moderate grade spondylolisthesis.

Conservative treatment for spinal stenosis may include physical therapy, pharmacotherapy, epidural steroid injections, and many other modalities. The terms "nonsurgical" and "nonoperative" have also been used to describe conservative treatment. Professional societies recommend that surgery for lumbar spinal stenosis should be considered only after a patient fails to respond to conservative treatment but there is no agreement about what constitutes an adequate course or duration of treatment.

The term "conservative management" may refer to "usual care" or to specific programs of nonoperative treatment, which use defined protocols for the components and intensity of conservative treatments, often in the context of an organized program of coordinated, multidisciplinary care. The distinction is important in defining what constitutes a failure of conservative treatment and what comparators should be used in trials of surgical versus nonsurgical management. The rationale for surgical treatment of symptomatic spinal stenosis rests on the Spine Patient Outcomes Research Trial (SPORT), which found that patients who underwent surgery for spinal stenosis and spondylolisthesis had better outcomes than those treated nonoperatively. The SPORT investigators did not require a specified program of nonoperative care but rather let each

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

site decide what to offer. A subgroup analysis of the SPORT trial found that only 37% of nonsurgically treated patients received physical therapy in the first 6 weeks of the trial and that those who received physical therapy before 6 weeks had better functional outcomes and were less likely to cross over to surgery later. These findings provide some support for the view that, in clinical trials, patients who did not have surgery may have had suboptimal treatment, which can lead to a larger difference favoring surgery. The SPORT investigators asserted that their nonoperative outcomes represented typical results at a multidisciplinary spine center at the time, but recommended that future studies compare the efficacy of specific nonoperative programs to surgery.

A recent trial by Delitto et al (2015) compared surgical decompression with a specific therapy program emphasizing physical therapy and exercise. Patients with lumbar spinal stenosis and from 0 to 5 mm of slippage (spondylolisthesis) who were willing to be randomized to decompression surgery versus an intensive, organized program of nonsurgical therapy were eligible. Oswestry Disability Index scores were comparable to those in the SPORT trial. A high proportion of patients assigned to nonsurgical care (57%) crossed over to surgery (in SPORT the proportion was 43%), but crossover from surgery to nonsurgical care was minimal. When analyzed by treatment assignment, Oswestry Disability Index scores were similar in the surgical and nonsurgical groups after 2 years of follow-up. The main implication is that about one-third of patients who were deemed candidates for decompression surgery but instead entered an intensive program of conservative care achieved outcomes similar to those of a successful decompression.

Diagnostic criteria for fusion surgery are challenging because patients without spondylolisthesis and those with grade 1 spondylolisthesis are equally likely to have predominant back pain or predominant leg pain. The SPORT trial did not provide guidance on which surgery is appropriate for patients who do not have spondylolisthesis, because nearly all patients with spondylolisthesis underwent fusion whereas nearly all those who did not have spondylolisthesis underwent decompression alone. In general, patients with predominant back pain have more severe symptoms, worse function, and less improvement with surgery (with or without fusion). Moreover, because back pain improved to the same degree for the fused spondylolisthesis patients as for the unfused spinal stenosis patients at 2 years, the SPORT investigators concluded that it was unlikely that fusion led to better surgical outcomes in patients with spondylolisthesis than those with no spondylolisthesis.

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

Throughout the 2000s, decompression plus fusion became more widely used until, in 2011, it surpassed decompression alone as a surgical treatment for spinal stenosis. However, in 2016, findings from 2 randomized trials of decompression alone versus decompression plus fusion were published. The Swedish Spinal Stenosis Study found no benefit of fusion plus decompression compared with decompression alone in patients who had spinal stenosis with or without degenerative spondylolisthesis. The Spinal Laminectomy Versus Instrumented Pedicle Screw (SLIP) trial found a small but clinically meaningful improvement in the Physical Component Summary score of the 36-Item Short-Form Health Survey but no change in Oswestry Disability Index scores at 2, 3, and 4 years in patients who had spinal stenosis with grade 1 spondylolisthesis (3 to 14 mm). The patients in SLIP who had laminectomy alone had higher reoperation rates than those in Swedish Spinal Stenosis Study, and the patients who underwent fusion had better outcomes in SLIP than in Swedish Spinal Stenosis Study. While some interpret the studies to reflect differences in patient factors-in particular, Swedish Spinal Stenosis Study but not SLIP included patients with no spondylolisthesis, the discrepancy may also be influenced by factors such as time of follow-up or national practice patterns. As Pearson (2016) noted, it might have been helpful to have patient-reported outcome data on the patients before and after reoperation, to see whether the threshold for reoperation differed in the 2 settings. A small trial conducted in Japan, Inose et al (2018) found no difference in patientreported outcomes between laminectomy alone and laminectomy plus posterolateral fusion in patients with 1-level spinal stenosis and grade 1 spondylolisthesis; about 40% of the patients also had dynamic instability. Certainty in the findings of this trial is limited because of its size and methodologic flaws.

Spacer Devices

Investigators have sought less invasive ways to stabilize the spine and reduce the pressure on affected nerve roots, including interspinous and interlaminar implants (spacers). These devices stabilize or distract the adjacent lamina and/or spinous processes and restrict extension in patients with lumbar spinal stenosis and neurogenic claudication.

Interspinous Implants

Interspinous spacers are small devices implanted between the vertebral spinous processes. After implantation, the device is opened or expanded to distract the neural foramina and decompress the nerves. One type of interspinous implant is inserted between the spinous processes through a small (4 to 8 cm) incision and acts as a spacer between the spinous processes, maintaining flexion of that spinal interspace. The supraspinous ligament is maintained and assists in holding the implant in

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

place. The surgery does not include any laminotomy, laminectomy, or foraminotomy at the time of insertion, thus reducing the risk of epidural scarring and cerebrospinal fluid leakage. Other interspinous spacers require removal of the interspinous ligament and are secured around the upper and lower spinous processes.

Interlaminar Spacers

Interlaminar spacers are implanted midline between the adjacent lamina and spinous processes to provide dynamic stabilization either following decompression surgery or as an alternative to decompression surgery. Interlaminar spacers have 2 sets of wings placed around the inferior and superior spinous processes. They may also be referred to as interspinous U. These implants aim to restrict painful motion while enabling normal motion. The devices (spacers) distract the laminar space and/or spinous processes and restrict extension. This procedure theoretically enlarges the neural foramen and decompresses the cauda equina in patients with spinal stenosis and neurogenic claudication.

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)

Three interspinous and interlaminar stabilization and distraction devices have been approved by the U.S. Food Drug Administration (FDA) through the premarket approval (FDA product code: NQO) are summarized in Table 1.

Table 1. Interspinous	and Interlaminar	Stabilization/Distraction	Devices	With Premarket
Approval				

Device Name	Manufacturer	Approval Date	PMA
X Stop Interspinous Process Decompression System	Medtronic Sofamor Danek	2005 (withdrawn 2015)	P040001
Coflex ^{®‡} Interlaminar Technology	Paradigm Spine (acquired by RTI Surgical)	2012	P110008

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

Superion ^{®‡} Indirect Decompression System (previously Superion ^{®‡} Interspinous Spacer)	VertiFlex (acquired by Boston Scientific)	2015	P140004
--	--	------	---------

PMA: premarket approval.

The Superion Indirect Decompression System (formerly InterSpinous Spacer) is indicated to treat skeletally mature patients suffering from pain, numbness, and/or cramping in the legs secondary to a diagnosis of moderate degenerative lumbar spinal stenosis, with or without grade 1 spondylolisthesis, confirmed by x-ray, magnetic resonance imaging (MRI), and/or computed tomography evidence of thickened ligamentum flavum, narrowed lateral recess, and/or central canal or foraminal narrowing. It is intended for patients with an impaired physical function who experience relief in flexion from symptoms of leg/buttock/groin pain, numbness, and/or cramping, with or without back pain, and who have undergone at least 6 months of nonoperative treatment.

FDA lists the following contraindications to use of the Superion Indirect Decompression System:

- "An allergy to titanium or titanium alloy.
- Spinal anatomy or disease that would prevent implantation of the device or cause the device to be unstable in situ, such as:
 - Instability of the lumbar spine, eg, isthmic spondylolisthesis or degenerative spondylolisthesis greater than grade 1 (on a scale of 1 to 4)
 - An ankylosed segment at the affected level(s)
 - Fracture of the spinous process, pars interarticularis, or laminae (unilateral or bilateral);
 - Scoliosis (Cobb angle >10 degrees)
- *Cauda equina* syndrome, defined as neural compression causing neurogenic bladder or bowel dysfunction.
 - Diagnosis of severe osteoporosis, defined as bone mineral density (from DEXA [dual-energy x-ray absorptiometry] scan or equivalent method) in the spine or hip that is more than 2.5 S.D. [standard deviations] below the mean of adult normal.
- Active systemic infection, or infection localized to the site of implantation.
- Prior fusion or decompression procedure at the index level.
- Morbid obesity defined as a body mass index (BMI) greater than 40."

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

The coflex Interlaminar Technology implant (Paradigm Spine) is a single-piece U-shaped titanium alloy dynamic stabilization device with pairs of wings that surround the superior and inferior spinous processes. The coflex (previously called the Interspinous U) is indicated for use in 1- or 2-level lumbar stenosis from the L1 to L5 vertebrae in skeletally mature patients with at least moderate impairment in function, who experience relief in flexion from their symptoms of leg/buttocks/groin pain, with or without back pain, and who have undergone at least 6 months of nonoperative treatment. The coflex "is intended to be implanted midline between the adjacent lamina of 1 or 2 contiguous lumbar motion segments. Interlaminar stabilization is performed after decompression of stenosis at the affected level(s).

FDA lists the following contraindications to use of the coflex:

- "Prior fusion or decompressive laminectomy at any index lumbar level.
- Radiographically compromised vertebral bodies at any lumbar level(s) caused by current or past trauma or tumor (eg, compression fracture).
- Severe facet hypertrophy that requires extensive bone removal which would cause instability.
- Grade II or greater spondylolisthesis.
- Isthmic spondylolisthesis or spondylolysis (pars fracture).
- Degenerative lumbar scoliosis (Cobb angle greater than 25°).
- Osteoporosis.
- Back or leg pain of unknown etiology.
- Axial back pain only, with no leg, buttock, or groin pain.
- Morbid obesity defined as a body mass index > 40.
- Active or chronic infection systemic or local.
- Known allergy to titanium alloys or MR [magnetic resonance] contrast agents.
 - Cauda equina syndrome defined as neural compression causing neurogenic bowel or bladder dysfunction."

The FDA labeling also contains multiple precautions and the following warning: "Data has demonstrated that spinous process fractures can occur with coflex^{®‡} implantation."

At the time of approval, the FDA requested additional postmarketing studies to provide longer-term device performance and device performance under general conditions of use. The first was the 5-year follow-up of the pivotal investigational device exemption trial. The second was a multicenter

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

trial with 230 patients in Germany who were followed for 5 years, comparing decompression alone with decompression plus coflex. The third, a multicenter trial with 345 patients in the U.S. who were followed for 5 years, compared decompression alone with decompression plus coflex. FDA product code: NQO.

Rationale/Source

This medical policy was developed through consideration of peer-reviewed medical literature generally recognized by the relevant medical community, U.S. Food and Drug Administration approval status, nationally accepted standards of medical practice and accepted standards of medical practice in this community, technology evaluation centers, reference to federal regulations, other plan medical policies, and accredited national guidelines.

Description

Interspinous and interlaminar implants (spacers) stabilize or distract the adjacent lamina and/or spinous processes and restrict extension to reduce pain in patients with lumbar spinal stenosis and neurogenic claudication. Interspinous spacers are small devices implanted between the vertebral spinous processes. After implantation, the device is opened or expanded to distract (open) the neural foramen and decompress the nerves. Interlaminar spacers are implanted midline between the adjacent lamina and spinous processes to provide dynamic stabilization either following decompression surgery or as an alternative to decompression surgery.

Summary of Evidence

For individuals who have spinal stenosis and no spondylolisthesis or grade 1 spondylolisthesis who receive an interspinous or interlaminar spacer as a stand-alone procedure, the evidence includes 1 systematic review of randomized controlled trials (RCTs) of X-STOP spacer devices (which is no longer marketed) or other devices not approved in the US, observational retrospective claims data analyses, and 2 RCTs of 2 spacers compared to each other (Superion Indirect Decompression System, coflex interlaminar implant). Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. Overall, the use of interspinous or interlaminar distraction devices (spacers) as an alternative to spinal decompression has shown high failure and complication rates. A systematic review of RCTs comparing interspinous spacer devices (ISDs) and decompression surgery in patients with lumbar spinal stenosis found that ISD resulted in an increased rate of reoperation compared to decompression, as well as no statistically significant

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

differences in pain, functional, and quality of life outcomes. Additional longitudinal retrospective comparative claims analyses found that there was a significantly lower rate of reoperation in patients with lumbar spinal stenosis who received ISD compared to open surgery. However, there are many limitations inherent to claims analyses, including the possibility of coding or data entry errors and the omission of clinical details not needed to justify payment. For example, diagnosis codes identified in claims data lack clinical context, such as the severity of lumbar spinal stenosis or postoperative complications, as well as other prior therapies. Claims data also does not capture patient-reported outcomes, such as visual analog scale scores or Zurich Claudication Questionnaire scores, limiting the ability to determine true efficacy. It is unknown if authors were able to see when a patient was lost to follow-up due to death or end of Medicare coverage, as these rates were not reported. Additionally, in 1 of the studies, since the baseline characteristics of patients receiving ISD indicated that these patients may be inherently sicker than those receiving open surgery, we need clinical context to infer if the reason they did not receive additional surgical procedures post initial ISD placement is because they truly didn't require intervention, or they were too sick to tolerate the procedure. While claims data gives us some information related to re-operation rates, direct or indirect comparative studies using clinical data and validated outcomes measures are required to draw conclusions on the utility of ISDs compared to open surgery. A pivotal trial compared the Superion Interspinous Spacer with the X-STOP Interspinous Process Decompression System (which is no longer marketed), without conservative care or standard surgery comparators. The trial reported significantly better outcomes with the Superior Interspinous Spacer on some measures. For example, the trial reported more than 80% of patients experienced improvements in certain quality of life outcome domains. Interpretation of this trial is limited by questions about the number of patients used to calculate success rates, the lack of efficacy of the comparator, and the lack of an appropriate control group treated by surgical decompression. The coflex interlaminar implant (formerly called the interspinous U) was compared with decompression in the multicenter, double-blind FELIX trial. Functional outcomes and pain levels were similar in the 2 groups at 1 year follow-up, but reoperation rates due to the absence of recovery were substantially higher with the coflex implant (29%) than with bony decompression (8%). For patients with 2-level surgery, the reoperation rate was 38% for coflex and 6% for bony decompression. At 2 years, reoperations due to the absence of recovery had been performed in 33% of the coflex group and 8% of the bony decompression group. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have severe spinal stenosis and grade 1 spondylolisthesis or instability who have failed conservative therapy who receive an interlaminar spacer with spinal decompression

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

surgery, the evidence includes 2 RCTs with a mixed population of patients. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. Use of the coflex interlaminar implant as a stabilizer after surgical decompression has been studied in 2 situations-as an adjunct to decompression compared with decompression alone (superiority) and as an alternative to spinal fusion after decompression (noninferiority). For decompression with coflex versus decompression with lumbar spinal fusion, the pivotal RCT, conducted in a patient population with spondylolisthesis no greater than grade 1 and significant back pain, showed that stabilization of decompression with the coflex implant was noninferior to decompression with spinal fusion for the composite clinical success measure. A secondary (unplanned) analysis of patients with grade 1 spondylolisthesis (99 coflex patients and 51 fusion patients) showed a decrease in operative time (104 vs. 157 minutes; p<.001) and blood loss (106 vs. 336 mL; p<.001). There were no statistically significant differences between the coflex and fusion groups in Oswestry Disability Index, visual analog scale, and Zurich Claudication Questionnaire scores after 2 years. In that analysis, 62.8% of coflex patients and 62.5% of fusion patients met the criteria for operative success. The efficacy of the comparator in this trial is uncertain because successful fusion was obtained in only 71% of the control group, leaving nearly a third of patients with pseudoarthrosis. The report indicated no significant differences in Oswestry Disability Index or visual analog scale between the patients with pseudoarthrosis or solid fusion but Zurich Claudication Questionnaire scores were not reported. There were 18 (18%) spinous process fractures in the coflex group, of which 7 had healed by the 2year follow-up. Reoperation rates were 6% in the fusion group and 14% in the coflex group (p=.18), including 8 (8%) coflex cases that required conversion to fusion. This secondary analysis is considered hypothesis-generating, and a prospective trial in patients with grade 1 spondylolisthesis is needed. In an RCT conducted in a patient population with moderate-to-severe lumbar spinal stenosis with significant back pain and up to grade 1 spondylolisthesis, there was no difference in the primary outcome measure, the Oswestry Disability Index, between the patients treated with coflex plus decompression versus decompression alone. Composite clinical success defined as a minimum 15-point improvement in Oswestry Disability Index score, no reoperations, no devicerelated complications, no epidural steroid injections in the lumbar spine, and no persistent new or worsening sensory or motor deficit was used to assess superiority. A greater proportion of patients who received coflex plus decompression instead of decompression alone achieved the composite endpoint. However, the superiority of coflex plus decompression is uncertain because the difference in the composite clinical success was primarily driven by a greater proportion of patients in the control arm who received a secondary rescue epidural steroid injection. Because the trial was openlabel, surgeons' decision to use epidural steroid injection could have been affected by their

^{©2024} Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

knowledge of the patient's treatment. Consequently, including this component in the composite clinical success measure might have overestimated the potential benefit of treatment. Analysis was not reported separately for the group of patients who had grade 1 spondylolisthesis, leaving the question open about whether the implant would improve outcomes in this population. Consideration of existing studies as indirect evidence regarding the outcomes of using spacers in this subgroup is limited by substantial uncertainty regarding the balance of potential benefits and harms. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have spinal stenosis and no spondylolisthesis or instability who receive an interlaminar spacer with spinal decompression surgery, the evidence includes an RCT and a retrospective study. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The pivotal RCT, conducted in a patient population with spondylolisthesis no greater than grade 1 and significant back pain, showed that stabilization of decompression with the coflex implant was noninferior to decompression with spinal fusion for the composite clinical success measure. However, in addition to concerns about the efficacy of fusion in this study, there is uncertainty about the net benefit of routinely adding spinal fusion to decompression in patients with no spondylolisthesis. Fusion after open decompression laminectomy is a more invasive procedure that requires longer operative time and has a potential for higher procedural and postsurgical complications. When the trial was conceived, decompression plus fusion was viewed as the standard of care for patients with spinal stenosis with up to grade 1 spondylolisthesis and back pain; thus demonstrating noninferiority with a less invasive procedure such as coflex would be adequate to result in a net benefit in health outcomes. However, the role of fusion in the population of patients represented in the pivotal trial is uncertain, especially since the publication of the Swedish Spinal Stenosis Study, and the Spinal Laminectomy versus Instrumented Pedicle Screw study, 2 RCTs comparing decompression alone with decompression plus spinal fusion that were published in 2016. As a consequence, results generated from a noninferiority trial using a comparator whose net benefit on health outcome is uncertain confounds meaningful interpretation of trial results. Therefore, demonstrating the noninferiority of coflex plus spinal decompression versus spinal decompression plus fusion, a comparator whose benefit on health outcomes is uncertain, makes it difficult to apply the results of the study. Outcomes from the subgroup of patients without spondylolisthesis who received an interlaminar device with decompression in the pivotal Investigational Device Exemption trial have been published, but comparison with decompression

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

alone in this population has not been reported. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Supplemental Information

Clinical Input From Physician Specialty Societies and Academic Medical Centers

While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

2018 Input

Clinical input was sought to help determine whether the use of interlaminar spacer with spinal decompression surgery for individuals with spinal stenosis, predominant back pain, and no or grade 1 spondylolisthesis who failed conservative treatment would provide a clinically meaningful improvement in net health outcome and whether the use is consistent with generally accepted medical practice. In response to requests, clinical input was received from 6 respondents, including 2 specialty society-level responses and 4 physician-level responses, including 2 identified through a specialty society and 2 through an academic medical center.

For individuals who have severe spinal stenosis and grade 1 spondylolisthesis or instability who have failed conservative therapy who receive an interlaminar spacer with spinal decompression surgery, clinical input is not universally supportive of a clinically meaningful improvement in net health outcome. While some respondents considered the shorter recovery time and lower complication rate to be an advantage compared to fusion, others noted an increase in complications and the need for additional surgery with the device.

For individuals who have spinal stenosis and no spondylolisthesis or instability who receive an interlaminar spacer with spinal decompression surgery, clinical input is not universally supportive of a clinically meaningful improvement in net health outcomes, with clinical experts noting an increase in complications and need for additional surgery compared to laminectomy alone.

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

2011 Input

In response to requests, input was received from 2 physician specialty societies and 2 academic medical centers while this policy was under review in 2011. Two of those providing input agreed this technology is investigational due to the limited high-quality data on long-term outcomes (including durability). Two reviewers did not consider this technology investigational, stating that it has a role in the treatment of selected patients with neurogenic intermittent claudication.

2009 Input

In response to requests, input was received from 1 physician specialty society and 3 academic medical centers while this policy was under review in 2009. Differing input was received; several reviewers indicated data were sufficient to demonstrate improved outcomes.

Practice Guidelines and Position Statements

Guidelines or position statements will be considered for inclusion in 'Supplemental Information' if they were issued by, or jointly by, a US professional society, an international society with US representation, or National Institute for Health and Care Excellence (NICE). Priority will be given to guidelines that are informed by a systematic review, include strength of evidence ratings, and include a description of management of conflict of interest.

American Society of Pain and Neuroscience

In 2022, the American Society of Pain and Neuroscience (ASPN) published a consensus guideline outlining best practices for minimally invasive lumbar spinal stenosis treatment. The following recommendation was provided with regard to the use of interspinous spacers:

• "Interspinous spacers should be considered for treatment of symptomatic spinal stenosis at the index level with mild-to-moderate spinal stenosis, with less than or equal to grade 1 spondylolistheses, in the absence of dynamic instability or micro-instability represented as fluid in the facets on advanced imaging. Grade A; Level of certainty high; Quality of Evidence 1-A"

In 2022, ASPN also published evidence-based clinical guidelines informed by a systematic review of randomized controlled trials on interventional treatments for low back pain. The following recommendation was provided with regard to the use of interspinous spacers:

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

• "Stand-alone interspinous spacers for indirect decompression are safe and effective for the treatment of mild to moderate lumbar spinal stenosis if no contraindications exits. Grade A; Level of certainty high; Quality of Evidence: I-A."

Department of Health & Human Services

In 2019, a Department of Health & Human Services inter-agency task force released a report on pain management best practices. The report provides best practices for development of effective pain management plans using a patient-centered approach in the diagnosis and treatment of acute and chronic pain. All of their statements are on generalized pain and their recommendations relate to gaps in comprehensive pain plan development. In their report, regarding interspinous process spacer devices, they state: "research has shown that interspinous process spacer devices can provide relief for patients with lumbar spinal stenosis with neuroclaudication." The guidelines do not compare therapies to each other and is not informed by a systematic review, it only offers various options to consider when building a pain management plan for a patient.

International Society for the Advancement of Spine Surgery

In 2016, the International Society for the Advancement of Spine Surgery published recommendations and coverage criteria for decompression with interlaminar stabilization. The Society concluded that an interlaminar spacer in combination with decompression can provide stabilization in patients who do not present with greater than grade 1 instability. Criteria included:

- 1. Radiographic confirmation of at least moderate lumbar stenosis.
- 2. Radiographic confirmation of the absence of gross angular or translatory instability of the spine at index or adjacent levels.
- 3. Patients who experience relief in flexion from their symptoms of leg/buttocks/groin pain, with or without back pain, and who have undergone at least 12 weeks of non-operative treatment.

The document did not address interspinous and interlaminar distraction devices without decompression.

North American Spine Society

In 2018, the North American Spine Society (NASS) published specific coverage policy recommendations on the lumbar interspinous device without fusion and with decompression. The NASS recommended that:

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

"Stabilization with an interspinous device without fusion in conjunction with laminectomy may be indicated as an alternative to lumbar fusion for degenerative lumbar stenosis with or without low-grade spondylolisthesis (less than or equal to 3 mm of anterolisthesis on a lateral radiograph) with qualifying criteria when appropriate:

- 1. Significant mechanical back pain is present (in addition to those symptoms associated with neural compression) that is felt unlikely to improve with decompression alone. Documentation should indicate that this type of back pain is present at rest and/or with movement while standing and does not have characteristics consistent with neurogenic claudication.
- 2. A lumbar fusion is indicated post-decompression for a diagnosis of lumbar stenosis with a Grade 1 degenerative spondylolisthesis as recommended in the NASS Coverage Recommendations for Lumbar Fusion.
- 3. A lumbar laminectomy is indicated as recommended in the NASS Coverage Recommendations for Lumbar Laminectomy.
- 4. Previous lumbar fusion has not been performed at an adjacent segment.
- 5. Previous decompression has been performed at the intended operative segment.

Interspinous devices are NOT indicated in cases that do not fall within the above parameters. In particular, they are not indicated in the following scenarios and conditions:

- Degenerative spondylolisthesis of Grade 2 or higher.
- Degenerative scoliosis or other signs of coronal instability.
- Dynamic instability as detected on flexion-extension views demonstrating at least 3 mm of change in translation.
- Iatrogenic instability or destabilization of the motion segment.
- A fusion is otherwise not indicated for a Grade 1 degenerative spondylolisthesis and stenosis as per the *NASS Coverage Recommendations for Lumbar Fusion*.
- A laminectomy for spinal stenosis is otherwise not indicated as per the NASS Coverage Recommendations for Lumbar Laminectomy."

Of note, clinical guidelines from NASS are no longer freely available.

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

National Institute for Health and Care Excellence

In 2010, NICE published guidance that indicated "Current evidence on interspinous distraction procedures for lumbar spinal stenosis causing neurogenic claudication shows that these procedures are efficacious for carefully selected patients in the short and medium-term, although failure may occur and further surgery may be needed." The evidence reviewed consisted mainly of reports on X-STOP^{®‡} Interspinous Process Decompression System.

U.S. Preventive Services Task Force Recommendations

Not applicable.

Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials

Some currently ongoing and unpublished trials that might influence this review are listed in Table 2.

NCT No.	Trial Name	Planned Enrollment	Completion Date
Ongoing			
NCT02555280ª	A 2 and 5 Year Comparative Evaluation of Clinical Outcomes in the Treatment of Degenerative Spinal Stenosis With Concomitant Low Back Pain by Decompression With and Without Additional Stabilization Using the Coflex ^{®‡} Interlaminar Technology for FDA Real Conditions of Use Study (Post-Approval 'Real Conditions of Use' Study)	300	Nov 2027
NCT04192591ª	A 5-year Superion ^{®‡} IDS Clinical Outcomes Post- Approval Evaluation (SCOPE)	214	May 2032

Table 2. Summary of Key Trials

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

Unpublished			
NCT02457468 ^a	The Coflex ^{®‡} COMMUNITY Study: An Observational Study of Coflex ^{®‡} Interlaminar Technology	325	Dec 2019
NCT04087811ª	Postmarket Registry for Evaluation of the Superion ^{®‡} Spacer	1672	Mar 2021
NCT04563793ª	Postmarket Outcomes Study for Evaluation of the Superion Spacer	129	Mar 2023

NCT: national clinical trial.

^a Denotes industry-sponsored or cosponsored trial.

References

- 1. Lurie J, Tomkins-Lane C. Management of lumbar spinal stenosis. BMJ. Jan 04 2016; 352: h6234. PMID 26727925
- 2. Lurie JD, Tosteson TD, Tosteson A, et al. Long-term outcomes of lumbar spinal stenosis: eightyear results of the Spine Patient Outcomes Research Trial (SPORT). Spine (Phila Pa 1976). Jan 15 2015; 40(2): 63-76. PMID 25569524
- 3. Schroeder GD, Kurd MF, Vaccaro AR. Lumbar Spinal Stenosis: How Is It Classified?. J Am Acad Orthop Surg. Dec 2016; 24(12): 843-852. PMID 27849674
- 4. Haig AJ, Tomkins CC. Diagnosis and management of lumbar spinal stenosis. JAMA. Jan 06 2010; 303(1): 71-2. PMID 20051574
- 5. Genevay S, Atlas SJ, Katz JN. Variation in eligibility criteria from studies of radiculopathy due to a herniated disc and of neurogenic claudication due to lumbar spinal stenosis: a structured literature review. Spine (Phila Pa 1976). Apr 01 2010; 35(7): 803-11. PMID 20228710
- Chou R, Deyo R, Friedly J, et al. Nonpharmacologic Therapies for Low Back Pain: A Systematic Review for an American College of Physicians Clinical Practice Guideline. Ann Intern Med. Apr 04 2017; 166(7): 493-505. PMID 28192793
- 7. Birkmeyer NJ, Weinstein JN, Tosteson AN, et al. Design of the Spine Patient outcomes Research Trial (SPORT). Spine (Phila Pa 1976). Jun 15 2002; 27(12): 1361-72. PMID 12065987

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

- 8. Fritz JM, Lurie JD, Zhao W, et al. Associations between physical therapy and long-term outcomes for individuals with lumbar spinal stenosis in the SPORT study. Spine J. Aug 01 2014; 14(8): 1611-21. PMID 24373681
- 9. Delitto A, Piva SR, Moore CG, et al. Surgery versus nonsurgical treatment of lumbar spinal stenosis: a randomized trial. Ann Intern Med. Apr 07 2015; 162(7): 465-73. PMID 25844995
- 10. Katz JN. Surgery for lumbar spinal stenosis: informed patient preferences should weigh heavily. Ann Intern Med. Apr 07 2015; 162(7): 518-9. PMID 25844999
- Pearson A, Blood E, Lurie J, et al. Predominant leg pain is associated with better surgical outcomes in degenerative spondylolisthesis and spinal stenosis: results from the Spine Patient Outcomes Research Trial (SPORT). Spine (Phila Pa 1976). Feb 01 2011; 36(3): 219-29. PMID 21124260
- 12. Pearson A, Blood E, Lurie J, et al. Degenerative spondylolisthesis versus spinal stenosis: does a slip matter? Comparison of baseline characteristics and outcomes (SPORT). Spine (Phila Pa 1976). Feb 01 2010; 35(3): 298-305. PMID 20075768
- 13. Abdu WA, Lurie JD, Spratt KF, et al. Degenerative spondylolisthesis: does fusion method influence outcome? Four-year results of the spine patient outcomes research trial. Spine (Phila Pa 1976). Oct 01 2009; 34(21): 2351-60. PMID 19755935
- 14. Deyo RA, Mirza SK, Martin BI, et al. Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA. Apr 07 2010; 303(13): 1259-65. PMID 20371784
- 15. Dartmouth Institute. Variation in the care of surgical conditions: spinal stenosis. 2014.
- Yoshihara H, Yoneoka D. National trends in the surgical treatment for lumbar degenerative disc disease: United States, 2000 to 2009. Spine J. Feb 01 2015; 15(2): 265-71. PMID 25281920
- 17. Försth P, Ólafsson G, Carlsson T, et al. A Randomized, Controlled Trial of Fusion Surgery for Lumbar Spinal Stenosis. N Engl J Med. Apr 14 2016; 374(15): 1413-23. PMID 27074066
- 18. Ghogawala Z, Dziura J, Butler WE, et al. Laminectomy plus Fusion versus Laminectomy Alone for Lumbar Spondylolisthesis. N Engl J Med. Apr 14 2016; 374(15): 1424-34. PMID 27074067
- Peul WC, Moojen WA. Fusion Surgery for Lumbar Spinal Stenosis. N Engl J Med. Aug 11 2016; 375(6): 601. PMID 27517106
- 20. El Tecle NE, Dahdaleh NS. Fusion Surgery for Lumbar Spinal Stenosis. N Engl J Med. Aug 11 2016; 375(6): 597. PMID 27509110
- 21. Försth P, Michaëlsson K, Sandén B. Fusion Surgery for Lumbar Spinal Stenosis. N Engl J Med. Aug 11 2016; 375(6): 599-600. PMID 27509109

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

- Su BW, Vaccaro AR. Fusion Surgery for Lumbar Spinal Stenosis. N Engl J Med. Aug 11 2016; 375(6): 597-8. PMID 27509111
- Vasudeva VS, Chi JH. Fusion Surgery for Lumbar Spinal Stenosis. N Engl J Med. Aug 11 2016; 375(6): 598. PMID 27509112
- 24. Dijkerman ML, Overdevest GM, Moojen WA, et al. Decompression with or without concomitant fusion in lumbar stenosis due to degenerative spondylolisthesis: a systematic review. Eur Spine J. Jul 2018; 27(7): 1629-1643. PMID 29404693
- 25. Pearson AM. Fusion in degenerative spondylolisthesis: how to reconcile conflicting evidence. J Spine Surg. Jun 2016; 2(2): 143-5. PMID 27683712
- 26. Inose H, Kato T, Yuasa M, et al. Comparison of Decompression, Decompression Plus Fusion, and Decompression Plus Stabilization for Degenerative Spondylolisthesis: A Prospective, Randomized Study. Clin Spine Surg. Aug 2018; 31(7): E347-E352. PMID 29877872
- 27. Food and Drug Administration. Summary of Safety and Effectiveness Data (SSED): coflex Interlaminar Technology. 2012; https://www.eccessdeta.fda.gov/adrh_docs/pdf11/P110008h.pdf

https://www.accessdata.fda.gov/cdrh_docs/pdf11/P110008b.pdf.

- 28. Xin JH, Che JJ, Wang Z, et al. Effectiveness and safety of interspinous spacer versus decompressive surgery for lumbar spinal stenosis: A meta-analysis of randomized controlled trials. Medicine (Baltimore). Nov 17 2023; 102(46): e36048. PMID 37986330
- 29. Hagedorn JM, Yadav A, D'Souza RS, et al. The incidence of lumbar spine surgery following Minimally Invasive Lumbar Decompression and Superion Indirect Decompression System for treatment of lumbar spinal stenosis: a retrospective review. Pain Pract. Jun 2022; 22(5): 516-521. PMID 35373492
- 30. Whang PG, Tran O, Rosner HL. Longitudinal Comparative Analysis of Complications and Subsequent Interventions Following Stand-Alone Interspinous Spacers, Open Decompression, or Fusion for Lumbar Stenosis. Adv Ther. Aug 2023; 40(8): 3512-3524. PMID 37289411
- 31. Rosner HL, Tran O, Vajdi T, et al. Comparison analysis of safety outcomes and the rate of subsequent spinal procedures between interspinous spacer without decompression versus minimally invasive lumbar decompression. Reg Anesth Pain Med. Jan 11 2024; 49(1): 30-35. PMID 37247945
- Patel VV, Whang PG, Haley TR, et al. Superion interspinous process spacer for intermittent neurogenic claudication secondary to moderate lumbar spinal stenosis: two-year results from a randomized controlled FDA-IDE pivotal trial. Spine (Phila Pa 1976). Mar 01 2015; 40(5): 275-82. PMID 25494323

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

- 33. Nunley PD, Deer TR, Benyamin RM, et al. Interspinous process decompression is associated with a reduction in opioid analgesia in patients with lumbar spinal stenosis. J Pain Res. 2018; 11: 2943-2948. PMID 30538533
- 34. Nunley PD, Patel VV, Orndorff DG, et al. Interspinous Process Decompression Improves Quality of Life in Patients with Lumbar Spinal Stenosis. Minim Invasive Surg. 2018; 2018: 1035954. PMID 30057811
- 35. Patel VV, Nunley PD, Whang PG, et al. Superion(®) InterSpinous Spacer for treatment of moderate degenerative lumbar spinal stenosis: durable three-year results of a randomized controlled trial. J Pain Res. 2015; 8: 657-62. PMID 26491369
- 36. Nunley PD, Patel VV, Orndorff DG, et al. Superion Interspinous Spacer Treatment of Moderate Spinal Stenosis: 4-Year Results. World Neurosurg. Aug 2017; 104: 279-283. PMID 28479526
- 37. Nunley PD, Patel VV, Orndorff DG, et al. Five-year durability of stand-alone interspinous process decompression for lumbar spinal stenosis. Clin Interv Aging. 2017; 12: 1409-1417. PMID 28919727
- 38. Moojen WA, Arts MP, Jacobs WC, et al. Interspinous process device versus standard conventional surgical decompression for lumbar spinal stenosis: randomized controlled trial. BMJ. Nov 14 2013; 347: f6415. PMID 24231273
- 39. Moojen W, Arts M, Jacobs W, et al. The Felix Trial: clinical results after one year and subgroup analysis: Introducing new implants and imaging techniques for lumbar spinal stenosis [doctoral dissertation], Universiteit Leiden; 2014;69-90.
- 40. Moojen WA, Arts MP, Jacobs WC, et al. IPD without bony decompression versus conventional surgical decompression for lumbar spinal stenosis: 2-year results of a double-blind randomized controlled trial. Eur Spine J. Oct 2015; 24(10): 2295-305. PMID 25586759
- 41. Davis RJ, Errico TJ, Bae H, et al. Decompression and Coflex interlaminar stabilization compared with decompression and instrumented spinal fusion for spinal stenosis and low-grade degenerative spondylolisthesis: two-year results from the prospective, randomized, multicenter, Food and Drug Administration Investigational Device Exemption trial. Spine (Phila Pa 1976). Aug 15 2013; 38(18): 1529-39. PMID 23680830
- 42. Davis R, Auerbach JD, Bae H, et al. Can low-grade spondylolisthesis be effectively treated by either coflex interlaminar stabilization or laminectomy and posterior spinal fusion? Two-year clinical and radiographic results from the randomized, prospective, multicenter US investigational device exemption trial: clinical article. J Neurosurg Spine. Aug 2013; 19(2): 174-84. PMID 23725394

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

- 43. Bae HW, Lauryssen C, Maislin G, et al. Therapeutic sustainability and durability of coflex interlaminar stabilization after decompression for lumbar spinal stenosis: a four year assessment. Int J Spine Surg. 2015; 9: 15. PMID 26056630
- 44. Musacchio MJ, Lauryssen C, Davis RJ, et al. Evaluation of Decompression and Interlaminar Stabilization Compared with Decompression and Fusion for the Treatment of Lumbar Spinal Stenosis: 5-year Follow-up of a Prospective, Randomized, Controlled Trial. Int J Spine Surg. 2016; 10: 6. PMID 26913226
- 45. Bae HW, Davis RJ, Lauryssen C, et al. Three-Year Follow-up of the Prospective, Randomized, Controlled Trial of Coflex Interlaminar Stabilization vs Instrumented Fusion in Patients With Lumbar Stenosis. Neurosurgery. Aug 2016; 79(2): 169-81. PMID 27050538
- 46. Simon RB, Dowe C, Grinberg S, et al. The 2-Level Experience of Interlaminar Stabilization: 5-Year Follow-Up of a Prospective, Randomized Clinical Experience Compared to Fusion for the Sustainable Management of Spinal Stenosis. International Journal of Spine Surgery. 2018;12(4):419.
- 47. Abjornson C, Yoon BV, Callanan T, et al. Spinal Stenosis in the Absence of Spondylolisthesis: Can Interlaminar Stabilization at Single and Multi-levels Provide Sustainable Relief?. Int J Spine Surg. Jan 2018; 12(1): 64-69. PMID 30280085
- 48. Grinberg SZ, Simon RB, Dowe C, et al. Interlaminar stabilization for spinal stenosis in the Medicare population. Spine J. Dec 2020; 20(12): 1948-1959. PMID 32659365
- 49. Zheng X, Chen Z, Yu H, et al. A minimum 8-year follow-up comparative study of decompression and coflex stabilization with decompression and fusion. Exp Ther Med. Jun 2021; 21(6): 595. PMID 33884033
- 50. Schmidt S, Franke J, Rauschmann M, et al. Prospective, randomized, multicenter study with 2year follow-up to compare the performance of decompression with and without interlaminar stabilization. J Neurosurg Spine. Apr 2018; 28(4): 406-415. PMID 29372860
- Lachin JM. Fallacies of last observation carried forward analyses. Clin Trials. Apr 2016; 13(2): 161-8. PMID 26400875
- Zhong J, O'Connell B, Balouch E, et al. Patient Outcomes After Single-level Coflex Interspinous Implants Versus Single-level Laminectomy. Spine (Phila Pa 1976). Jul 01 2021; 46(13): 893-900. PMID 33395022
- 53. Röder C, Baumgärtner B, Berlemann U, et al. Superior outcomes of decompression with an interlaminar dynamic device versus decompression alone in patients with lumbar spinal stenosis and back pain: a cross registry study. Eur Spine J. Oct 2015; 24(10): 2228-35. PMID 26187621

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

- 54. Crawford CH, Glassman SD, Mummaneni PV, et al. Back pain improvement after decompression without fusion or stabilization in patients with lumbar spinal stenosis and clinically significant preoperative back pain. J Neurosurg Spine. Nov 2016; 25(5): 596-601. PMID 27285666
- 55. Richter A, Schütz C, Hauck M, et al. Does an interspinous device (Coflex) improve the outcome of decompressive surgery in lumbar spinal stenosis? One-year follow up of a prospective case control study of 60 patients. Eur Spine J. Feb 2010; 19(2): 283-9. PMID 19967546
- 56. Richter A, Halm HF, Hauck M, et al. Two-year follow-up after decompressive surgery with and without implantation of an interspinous device for lumbar spinal stenosis: a prospective controlled study. J Spinal Disord Tech. Aug 2014; 27(6): 336-41. PMID 22643187
- 57. Tian NF, Wu AM, Wu LJ, et al. Incidence of heterotopic ossification after implantation of interspinous process devices. Neurosurg Focus. Aug 2013; 35(2): E3. PMID 23905954
- 58. Lee N, Shin DA, Kim KN, et al. Paradoxical Radiographic Changes of Coflex Interspinous Device with Minimum 2-Year Follow-Up in Lumbar Spinal Stenosis. World Neurosurg. Jan 2016; 85: 177-84. PMID 26361324
- 59. Gilbert OE, Lawhon SE, Gaston TL, et al. Decompression and Interlaminar Stabilization for Lumbar Spinal Stenosis: A Cohort Study and Two-Dimensional Operative Video. Medicina (Kaunas). Apr 05 2022; 58(4). PMID 35454355
- 60. Deer TR, Grider JS, Pope JE, et al. Best Practices for Minimally Invasive Lumbar Spinal Stenosis Treatment 2.0 (MIST): Consensus Guidance from the American Society of Pain and Neuroscience (ASPN). J Pain Res. 2022; 15: 1325-1354. PMID 35546905
- 61. Sayed D, Grider J, Strand N, et al. The American Society of Pain and Neuroscience (ASPN) Evidence-Based Clinical Guideline of Interventional Treatments for Low Back Pain. J Pain Res. 2022; 15: 3729-3832. PMID 36510616
- 62. US Department of Health and Human Services. Pain management best practices; 2019. Available at: https://www.hhs.gov/sites/default/files/pmtf-final-report-2019-05-23.pdf.
- 63. Guyer RD, Musacchio MJ, Cammisa FP, et al. ISASS recommendations/coverage criteria for decompression with interlaminar stabilization coverage indications, limitations, and/or medical necessity. Int J Spine Surg. 2016;10:Article 41.
- 64. North American Spine Society. NASS Coverage Policy Recommendations: Lumbar interspinous device without fusion & with decompression. Burr Ridge, IL: NASS; 2018. Available at: https://www.spine.org/coverage.

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

51. National Institute for Health and Care Excellence. Interspinous distraction procedures for lumbar spinal stenosis causing neurogenic claudication [IPG365]. 2010; https://www.nice.org.uk/guidance/IPG365.

Policy History

Original Effect	ive Date: 02/21/2007
Current Effecti	ve Date: 10/20/2024
02/07/2007	Medical Director review
02/21/2007	Medical Policy Committee approval.
02/04/2009	Medical Director review
02/19/2009	Medical Policy Committee approval. No change to coverage.
02/04/2010	Medical Policy Committee review
02/17/2010	Medical Policy Implementation Committee approval. No change to coverage.
02/03/2011	Medical Policy Committee review
02/16/2011	Medical Policy Implementation Committee approval. No change to coverage.
02/02/2012	Medical Policy Committee review
02/15/2012	Medical Policy Implementation Committee approval. Coverage eligibility
	unchanged.
06/06/2013	Medical Policy Committee review
06/25/2013	Medical Policy Implementation Committee approval. Title changed from
	"Interspinous Distraction Devices (Spacers)" to "Interspinous and Interlaminar
	Stabilization/Distraction Devices (Spacers)". Removed "secondary to lumbar
	stenosis" from the first investigational statement. Added that the use of an
	interlaminar device following decompressive surgery is considered to be
	investigational. Updated FDA section with new approval for Coflex.
06/05/2014	Medical Policy Committee review
06/18/2014	Medical Policy Implementation Committee approval. Coverage eligibility
	unchanged.
08/03/2015	Coding update: ICD10 Diagnosis code section added; ICD9 Procedure code section
	removed.
09/03/2015	Medical Policy Committee review
09/23/2015	Medical Policy Implementation Committee approval. Coverage eligibility
	unchanged.

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024 09/08/2016 Medical Policy Committee review Medical Policy Implementation Committee approval. Coverage eligibility 09/21/2016 unchanged. 01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes and CPT coding update Coding adjustment 02/01/2017 Medical Policy Committee review 07/06/2017 07/19/2017 Medical Policy Implementation Committee approval. Coding update. Coverage eligibility unchanged. Medical Policy Committee review 07/05/2018 07/11/2018 Medical Policy Implementation Committee approval. Clarified the first investigational statement to read, "the Company considers interspinous or interlaminar distraction devices as a stand-alone procedure as a treatment of spinal stenosis to be investigational." Coverage intent and eligibility unchanged. Medical Policy Committee review 07/03/2019 07/18/2019 Medical Policy Implementation Committee approval. Coverage eligibility unchanged. Medical Policy Committee review 07/02/2020 Medical Policy Implementation 07/08/2020 Committee approval. Coverage eligibility unchanged. Medical Policy Committee review 07/01/2021 07/14/2021 Medical Policy Implementation Committee approval. Coverage eligibility unchanged. Medical Policy Committee review 07/07/2022 Medical Policy Implementation Committee approval. Coverage eligibility 07/13/2022 unchanged. 07/06/2023 Medical Policy Committee review Medical Policy Implementation Committee approval. Coverage eligibility 07/12/2023 unchanged. Medical Policy Committee review 07/02/2024 Medical Policy Implementation Committee approval. Coverage eligibility 07/10/2024 unchanged.

Next Scheduled Review Date: 07/2025

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

Coding

The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology $(CPT^{\circledast})^{\ddagger}$, copyright 2023 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

Code Type	Code
CPT	22867, 22868, 22869, 22870
HCPCS	C1821
ICD-10 Diagnosis	All related diagnoses

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

Policy # 00221 Original Effective Date: 02/21/2007 Current Effective Date: 10/20/2024

standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

- A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. Food and Drug Administration (FDA) and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or
- B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:
 - 1. Consultation with technology evaluation center(s);
 - 2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
 - 3. Reference to federal regulations.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: If the Patient's health insurance contract contains language that differs from the BCBSLA Medical Policy definition noted above, the definition in the health insurance contract will be relied upon for specific coverage determinations.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.

NOTICE: Federal and State law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage.

©2024 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.